Теорія:

Щоб прикрасити святкову залу, придбали \(45\) гвоздик. Із них було зроблено однакові за кількістю квітів букети.
 
Розмірковуючи про можливе число букетів, отримаємо \(9\) букетів по \(5\) гвоздик у кожному, оскільки 45:9=5.
Якщо одне натуральне число ділиться націло на інше натуральне число, тоді перше число називають кратним другого числа, а друге число називають дільником першого числа.
Suns2.png
Отже, число \(45\) є кратним числу \(9\), а число \(9\) є дільником числа \(45\).
Розмірковуючи далі, \(8\) букетів не вийде, оскільки
\(45\) і \(8\) націло не ділиться, отже, \(8\) не є дільником числа \(45\) або число \(45\) не є кратним числу \(8\).
Дільником натурального числа \(a\) називають число, на яке \(a\) ділиться без остачі.
Визначення дільника можна сформулювати так:
Нехай \(m\), \(n\) — натуральні числа, тоді \(m\) — дільник числа \(n\), якщо існує таке натуральне число \(k\), що n=mk.
Наприклад, \(5\) — дільник числа \(120\), оскільки 120=524.
 
Число \(15\) має чотири дільники: \(1, 3, 5, 15\), бо на кожне з них ділиться без остачі. 
 
Число \(1\) є дільником будь-якого натурального числа.
 
Кратним натуральному числу \(a\) називають число, яке ділиться без остачі на \(a\).
Будь-яке натуральне число має нескінченно багато кратних.
 
Найменшим із кратних натурального числа є саме це число.
 
Перші п'ять чисел, кратних \(9\), такі: \(9, 18, 27, 36, 45\).