Теорія:

Відношенням називають частку двох чисел.
Зверни увагу!
Відношення числа a до числа b записують так: a \(:\) b або ab.
Відношення двох чисел показує, у скільки разів перше число більше другого.
Оскільки, 52=104=5020=2,51, тоді відношення \(5 : 2\)  можна замінити такими відношеннями:
 
         \(10 : 4\),
 
 або  \(50 : 20\),
 
чи     \(2,5 : 1\).
Зверни увагу!
Відношення не зміниться, якщо члени його помножити або поділити на одне і те ж саме число.
Відношення 5 до 2 і 2 до 5, як і дроби 52 і 25 називають взаємно оберненими.
Щоб знайти відношення однойменних величин (довжин, мас і т.д.), треба виразити їх в однакових одиницях вимірювання.
Приклад:
Щоб знайти відношення 30 см до 1 м, треба спочатку висловити обидві ці величини або в метрах, або в сантиметрах і знайти частку.
\(30\) см \(=\)\(0,3\) м, \(100\) см = \(1\) м, тому 0,3:1=310 або 30:100=310.
 
Відношення іноді буває зручно виражати у відсотках. Для цього досить помножити отриману частку на сто.
Якщо a і b — два числа або два значення однієї і тієї ж величини, тоді
  • відношення a до b — це частка від ділення a на b;
  • якщо a \(>\) b, тоді відношення a \(:\) b показує, у скільки разів a більше b;
  • якщо a \(<\) b, тоді відношення a \(:\) b показує, яку частину a становить від \(b\);
  • відсоткове відношення a до b — це відношення a \(:\) b, виражене у відсотках і дорівнює \((\)a \(:\) b\()·100\).