Теорія:

Ознаки, які ми розглядали раніше, і властивості, які будемо розглядати далі, доводяться різними способами.
Ознака — це певний факт, завдяки якому ми встановлюємо правильність поданого судження про певний об'єкт.
Якщо при перетині двох прямих третьою (січною), внутрішні різносторонні кути рівні, то ці дві прямі паралельні.
Якщо ми впевнені у правильності судження, ми формулюємо властивість об'єкта.
Якщо дві прямі паралельні, то при перетині їх третьою січною різносторонні кути є рівними.
Аксіома — це істина, яку не потрібно доводити. У кожній науці є свої аксіоми, на основі яких будуються всі подальші твердження та доведення.  
Аксіома паралельних прямих
На одній площині із заданою прямою через точку, що не лежить на цій прямій, можна провести лише одну пряму, паралельну заданій прямій.
Іноді вищезгадану аксіому вважають однією із властивостей паралельних прямих, але на правильності цієї аксіоми будується багато доведень у геометрії.
 
Paral_taisne_caur_p.png
  
Інші властивості паралельних прямих
  
\(1.\) Якщо одна з пари паралельних прямих паралельна третій прямій, то й друга пряма паралельна третій прямій.

\(2.\) Якщо певна пряма перетинає одну з двох паралельних прямих, то вона перетинає й другу паралельну пряму.
 
Ці властивості, на відміну від аксіоми, потрібно довести.
 
Доведення першої властивості.
  
Маємо дві паралельні прямі \(a\) і \(b.\) Чи правильне твердження, що якщо пряма \(c\) паралельна прямій \(a,\) то вона паралельна і прямій \(b?\)
 
Tris_paral_taisnes.png 
Скористаємося протилежним твердженням.
 
Припустимо, що можлива ситуація, коли пряма \(c\) паралельна одній із паралельних прямих — прямій \(a,\) і перетинає іншу пряму \(b\) у певній точці \(K.\)
 
Tris_paral_taisnes1.png
 
Виникає суперечність із аксіомою паралельних прямих. Ми маємо ситуацію, коли через точку проходять дві прямі, які перетинаються і паралельні одній і тій самій прямій \(a.\) Так не може бути, отже, прямі \(b\) і \(c\) перетинатися не можуть.

Ми довели правильність твердження. Якщо одна з пари паралельних прямих паралельна третій прямій, то й друга пряма паралельна третій.

Спробуй довести самостійно другу властивість.
 
Якщо певна пряма \(c\) перетинає одну з двох паралельних прямих \(a,\) то вона перетинає і другу паралельну пряму \(b.\)
  
Tris_paral_taisnes_krusto.png
 
Таким самим методом від протилежного твердження спробуй уявити, що можлива ситуація, коли пряма перетинає одну з паралельних прямих, але не перетинає іншу.
 
Tris_paral_taisnes_krusto1.png
 
Властивості кутів, які утворюються при перетині двох паралельних прямих із третьою (січною), ми вже назвали раніше.
При перетині двох паралельних прямих третьою січною:
 
  • внутрішні різносторонні кути рівні; 
     
  • відповідні кути рівні;
     
  • сума односторонніх кутів дорівнює \(180°.\)
Lenku_veidi_paral1.png